
Python Programming
─

Download FREE Notes for Computer Science and related resources only at

Kwiknotes.in

Don’t forget to check out our social media handles, do share with your friends.KW
IK
NO
TE
S

http://www.kwiknotes.in
https://www.facebook.com/profile.php?id=61551794133800
https://whatsapp.com/channel/0029Va5jjvT6LwHps6kQQs2K
https://www.instagram.com/kwiknotes.in/
https://www.linkedin.com/company/100681180/

Visit http://www.kwiknotes.in for best study material 1

Introduction to Python:
Python is a high-level programming language known for its simplicity and readability.

It supports both structured and object-oriented programming.

Python has a large standard library, making it suitable for a wide range of applications.

Algorithm :
- An algorithm is a sequence of instructions designed to obtain desired results when
executed in a specific sequence.

- It should have a clear sequence of instructions, finite steps, and at least one input and
output.

Properties of an Algorithm:

- Written in simple English.

- Each step is unique and self-explanatory.

- Must have at least one input and output.

- Has a finite number of steps.

Building Blocks of an Algorithm:

- Sequence: Ordered actions executed in a predetermined order.

- Selection (Decision): Based on a question, the program takes different actions.

- Iteration (Repetition): Repeating a set of actions.

Flowchart:
- A pictorial representation of an algorithm.

- Uses symbols to represent instructions and statements.

- Helps visualize the program logic.

Pseudo Code:
- An informal way to plan program logic.

- Uses simple English and can represent variables, functions, and control structures.

- Easily written and modified.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material 2

Advantages of Using a Flowchart:

- Effective communication.

- Proper documentation.

- Efficient coding and debugging.

- Efficient program maintenance.

Disadvantages of Flowcharts:

- Not a visual representation.

- Lacks a complete design picture.

Data Types and Variables
Data Types in Python:

- Numbers (int, float, complex)

- Strings

- Lists

- Tuples

- Dictionaries

Variables:

- A name that refers to a value.

- Assignment statement assigns a value to a variable.

Rules for Variable Names:

- Can contain letters (lowercase/uppercase), digits, and underscores.

- Must start with a letter or underscore.

- Case-sensitive.

- Avoid using special symbols.

- Can be of any length.

Expressions and Statements
Expressions:

- Combinations of values, variables, operators, and function calls.

- Evaluate to a single value.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material 3

Statements:

- Instructions that Python can execute.

- Include assignment statements, control flow statements, etc.

- Don't produce a result.

i) Assignment Statements:

- Assign a value to a variable.

- e.g., `a = 5`

ii) Multiline Statements:

- Use the line continuation character (`\`) to continue a statement over multiple lines.

Keywords:

- Reserved words in Python.

- Can't be used as variable names.

eg: if,else,while,def

Operators
1. Arithmetic Operators:

- Perform mathematical operations.

- e.g., `+, -, *, /, %, **`

2. Comparison Operators:

- Compare values.

- e.g., `>, <, >=, <=, ==, !=`

3. Assignment Operators:

- Assign values.

- e.g., `=, +=, -=`

4. Logical Operators:

- Perform logical operations.

- e.g., `and, or, not`

5. Bitwise Operators:

- Operate on binary digits.

- e.g., `&, |, ^`

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material 4

6. Membership Operators:

- Test for membership in a sequence.

- e.g., `in, not in`

7. Identity Operators:

- Test for object identity.

- e.g., `is, is not`

Control Flow
1. `if` Statement:

- Used to test a condition.

- Executes a block of code if the condition is true.

condition = True

if condition:

print("Condition is true")

2. Chained Conditional (`elif`) Statement:

- Used to check multiple conditions in sequence.

condition1 = False

condition2 = True

if condition1:

print("Condition 1 is true")

elif condition2:

print("Condition 2 is true")

3. `for` Loop:

- Iterates over a sequence of elements.

- Uses a variable to represent each element.

sequence = [1, 2, 3, 4, 5]

for element in sequence:

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material 5

print(element)

4. `while` Loop:

- Repeatedly executes a block of code as long as a condition is true.

count = 0

while count < 5:

print(count)

count += 1

5.`break` Statement:

- Exits a loop prematurely.

for i in range(5):

if i == 3:

break

print(i)

6. `continue` Statement:

- Skips the rest of the current iteration in a loop.

for i in range(5):

if i == 3:

continue

print(i)

7. `range()` Function:

- Generates a sequence of numbers for iteration.

for i in range(5):

print(i)

8. Pass Statement:

- The `pass` statement is used when you don't want any code to execute.

- It essentially acts as a placeholder and does nothing.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material 6

- Syntax: `pass`

for i in range(5):

if i == 3:

pass # Placeholder

else:

print(i)

9. Return Statement in Python:

- The `return` statement is used in functions to specify what value the function should give
back when it's called.

- When the `return` statement is executed, the function exits immediately.

- It can be used to send a result, variable, or any expression back to the caller.

- You can have multiple `return` statements in a function, but only one will be executed.

def add(a, b):

return a + b

result = add(3, 4) # Returns 7

Example:

In this example, the `add` function returns the sum of `a` and `b`. When `add(3, 4)` is called,
it returns `7`.

Sure, here are detailed notes with short example code for each of the topics you
mentioned:

Functions:
1. Built-in Functions:

- Python provides a rich library of built-in functions, which are ready-to-use and perform
various tasks.

- Examples:

print("Hello, World!") # print() displays text on the console.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material 7

length = len("Python") # len() returns the length of a string.

2. User-Defined Functions:

- You can create your own functions using the `def` keyword.

- Example:

def greet(name):

print("Hello, " + name)

greet("Alice") # Call the greet function

3. Anonymous Functions (Lambda Functions):

- Lambda functions are small, anonymous functions defined with the `lambda` keyword.

- Example:

double = lambda x: x * 2

result = double(5)

print(result) # Output: 10

Elements of User-Defined Functions:

- User-defined functions consist of a name, parameters, a block of code, and a return
statement.

def add(a, b):

result = a + b

return result

sum = add(3, 4)

Arguments and Return Values:

- Functions can accept arguments and return values.

def square(x):

return x * x

result = square(5)

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material 8

Formal vs. Actual Arguments:

- Formal arguments are parameters defined in the function, while actual arguments are
values passed when calling the function.

- Example:

def greet(name, message):

print(message + ", " + name)

greet("Bob", "Good morning") # "name" and "message" are formal

arguments

Scope and Lifetime:

- Variables in functions have local scope, meaning they're only accessible within the
function.

- Example:

def my_function():

x = 10 # x has a local scope within my_function

print(x)

my_function()

Positional, Keyword Arguments & Default Arguments:

- Functions can accept arguments by position or by explicitly naming them.

- Default arguments have preset values.

- Example:

def describe_pet(animal, name, color="brown"):

print("I have a " + color + " " + animal + " named " + name)

describe_pet("dog", "Fido")

describe_pet(name="Whiskers", color="gray", animal="cat")

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material 9

Nested Functions:
- You can define functions within other functions. Inner functions have access to the outer
function's variables.

def outer_function():

x = 10

def inner_function():

print("Value of x from outer function:", x)

inner_function()

outer_function()

Using Lambdas with filter(), map(), and reduce() functions:

- Lambdas are often used with functions like `filter()`, `map()`, and `reduce()` for quick, inline
operations on iterables.

- Example:

numbers = [1, 2, 3, 4, 5]

squared_numbers = list(map(lambda x: x ** 2, numbers))

Decorators:
- Decorators are functions that modify the behavior of other functions. They are often used
for code optimization or to add functionality.

- Example:

def my_decorator(func):

def wrapper():

print("Something is happening before the function is called.")

func()

print("Something is happening after the function is called.")

return wrapper

@my_decorator

def say_hello():

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
10

print("Hello!")

say_hello()

Iterators:
- Iterators are objects used to loop through containers like lists, tuples, and dictionaries.

- Example:

my_list = [1, 2, 3]

my_iterator = iter(my_list)

Generators:
- Generators are a type of iterable, but they generate values one at a time when needed,
saving memory.

- Example:

def my_generator():

yield 1

yield 2

yield 3

gen = my_generator()

value = next(gen)

Recursion:
- A function can call itself in a process known as recursion. It's used for solving problems
that can be broken down into smaller, similar subproblems.

- Example (Factorial calculation):

def factorial(n):

if n == 0:

return 1

else:

return n * factorial(n - 1)

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
11

Modules:

Importing Modules:
- Modules are files containing Python code that can be imported to reuse functions and
variables.

- Example:

import math

result = math.sqrt(16)

Standard Library Modules:
- Python has a rich standard library with modules like `math` (for mathematical functions)
and `random` (for random number generation).

- Example:

import random

random_number = random.randint(1, 100)

Custom Modules:
- You can create your own modules by organizing Python code into separate `.py` files and
importing them into your programs.

- Example (Assuming a custom module `my_module.py` exists):

import my_module

result = my_module.my_function()

Arrays (NumPy)

Single-dimensional Arrays:
- NumPy provides arrays that can hold elements of the same data type.

- Example:

import numpy as np

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
12

my_array = np.array([1, 2, 3, 4, 5])

Multi-dimensional Arrays (Up to Three Dimensions):
- NumPy allows you to create multi-dimensional arrays, including 2D and 3D arrays.

- Example:

import numpy as np

matrix = np.array([[1, 2, 3], [4, 5, 6]])

Array Creation using `array`, `linspace`, `logspace`, `arange`, `zeros`, `ones`:
- NumPy provides various functions to create arrays with specific properties:

- `array()`: Convert lists or tuples to arrays.

- `linspace()`: Create an array with equally spaced values over a specified range.

- `logspace()`: Create an array with values that are logarithmically spaced.

- `arange()`: Create an array with values within a specified range.

- `zeros()`: Create an array filled with zeros.

- `ones()`: Create an array filled with ones.

Operations on Arrays:
- NumPy provides various operations like addition, subtraction, element-wise
multiplication, and more for arrays.

- Example:

import numpy as np

array1 = np.array([1, 2, 3])

array2 = np.array([4, 5, 6])

result = array1 + array2

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
13

Strings:
- Strings are sequences of characters enclosed in single or double quotes.

- Example:

my_string = "Hello, Python"

Immutability:

- Strings are immutable, meaning you cannot change the characters in an existing string.

- Example:

my_string = "Hello"

my_string[0] = 'J' # This will result in an error

String Creation:

- Strings can be created using single quotes, double quotes, or triple quotes for multi-line
strings.

- Example:

single_quoted = 'Hello'

double_quoted = "World"

multi_line = '''This is a

multi-line string'''

String Indexing and Slicing:

- Strings support indexing and slicing to access individual characters or substrings.

- Example:

my_string = "Python"

char = my_string[0] # Access the first character 'P'

substring = my_string[1:4] # Slice 'yth' (characters 1, 2, and 3)

String Manipulation:

- Python provides many built-in string manipulation methods like `upper()`, `lower()`,
`strip()`, `replace()`, and more.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
14

- Example:

my_string = " Hello, Python "

upper_case = my_string.upper()

stripped = my_string.strip()

replaced = my_string.replace("Python", "World")

The Subscript Operator:

- The subscript operator (`[]`) is used for accessing characters in a string using their index.

- Example:

my_string = "Python"

first_char = my_string[0] # Access the first character 'P'

Searching Substrings:

- You can check if a substring exists within a string using the `in` operator.

- Example:

my_string = "Hello, Python"

contains_hello = "Hello" in my_string # True

contains_java = "Java" in my_string # False

Certainly, here are detailed notes with short example code for each of the topics you
mentioned:

File Handling: Text and Binary Files

Writing and Reading Operations:
- Python allows you to work with files using built-in functions like `open()`, `read()`, `write()`,
`close()`, etc.

- Example of writing to a text file:

with open("example.txt", "w") as file:

file.write("Hello, Python!")

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
15

- Example of reading from a text file:

with open("example.txt", "r") as file:

content = file.read()

Random Access to Files:

- You can move the file pointer to a specific location within a file to read or write at that
position.

- Example:

with open("example.txt", "r") as file:

file.seek(5) # Move to the 6th character

content = file.read(5) # Read the next 5 characters

The `with` Statement:
- The `with` statement is used for proper file handling, ensuring files are automatically
closed when done.

- Example:

with open("example.txt", "r") as file:

content = file.read()

Pickle in Python:
- Pickle is a module in Python for serializing and deserializing Python objects, allowing you
to save and load data structures.

- Example of writing a Python object to a file:

import pickle

data = {"name": "Alice", "age": 30}

with open("data.pkl", "wb") as file:

pickle.dump(data, file)

Manipulating Files and Directories:
- Python provides modules like `os` and `shutil` for working with files and directories.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
16

- Example of renaming a file:

import os

os.rename("old_file.txt", "new_file.txt")

Closing Files:

- Always close files after working with them to ensure data integrity.

- Example:

file = open("example.txt", "w")

file.write("Hello, Python!")

file.close()

Introduction to Object-Oriented Programming
Features:

- Object-Oriented Programming (OOP) is a programming paradigm based on the concept of
"objects."

- Key features include encapsulation, inheritance, and polymorphism.

Classes & Objects:
- A class is a blueprint for creating objects, and an object is an instance of a class.

- Example of defining a class and creating objects:

class Dog:

def __init__(self, name):

self.name = name

dog1 = Dog("Buddy")

dog2 = Dog("Max")

Immutable vs. Mutable Objects:
- Immutable objects cannot be changed after creation (e.g., strings).

- Mutable objects can be modified after creation (e.g., lists).

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
17

- Example:

name = "Alice" # Immutable

name = "Bob" # Creates a new string

numbers = [1, 2, 3] # Mutable

numbers.append(4) # Modifies the list

Access Modifiers:
- Access modifiers like public, private, and protected control the visibility of class members.

- Example:

class MyClass:

def __init__(self):

self.public_var = 42

self._protected_var = "hidden"

self.__private_var = "secret"

Attributes and Methods:
- Attributes are variables that store data within a class.

- Methods are functions defined within a class.

- Example:

class Circle:

def __init__(self, radius):

self.radius = radius

def area(self):

return 3.14 * self.radius**2

Data Hiding:
- Data hiding is achieved using double underscores to make attributes and methods
private.

- Example:

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
18

class MyData:

def __init__(self):

self.__private_data = "hidden"

def get_data(self):

return self.__private_data

The `self` Variable:

- In Python, `self` refers to the instance of the class.

- It is the first parameter in all instance methods.

- Example:

class MyClass:

def __init__(self, data):

self.data = data

def display(self):

print(self.data)

Constructor:
- A constructor is a special method used to initialize objects.

- In Python, the constructor is `__init__()`.

- Example:

class Person:

def __init__(self, name, age):

self.name = name

self.age = age

Instance Variables and Class or Static Variables:
- Instance variables belong to an instance of a class.

- Class variables are shared among all instances of a class.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
19

- Example:

class Employee:

company = "ABC Inc." # Class variable

def __init__(self, name, salary):

self.name = name # Instance variable

self.salary = salary

Inner Classes:

- A class defined inside another class is an inner class.

- Example:

class Outer:

def __init__(self):

self.outer_data = 42

class Inner:

def __init__(self):

self.inner_data = "Hello"

Passing Members of One Class to Another Class:

- You can pass objects of one class as arguments to methods of another class.

- Example:

class Student:

def __init__(self, name, age):

self.name = name

self.age = age

class School:

def admit_student(self, student):

print(f"Admitted student: {student.name}")

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
20

Exception Handling

Error, Exception: Preliminaries and Exception Class Hierarchy:
- Errors are problems in a program that cause it to terminate.

- Exceptions are errors that can be handled during program execution.

- Example:

try:

result = 1 / 0

except ZeroDivisionError as e:

print(f"An error occurred: {e}")

Handling Exceptions using `try`, `except`, and `finally` Clauses:

- Use `try` to enclose code that may raise an exception, and `except` to handle it.

- The `finally` block is executed regardless of whether an exception occurred.

- Example:

try:

result = 1 / 0

except ZeroDivisionError as e:

print(f"An error occurred: {e}")

finally:

print("Execution complete")

Raising Exceptions:

- You can raise exceptions using the `raise` statement.

- Example:

def check_age(age):

if age < 0:

raise ValueError("Age cannot be negative")

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
21

Assertions:
- Assertions are used to check conditions that must be true for the program to continue.

- Example:

def divide(a, b):

assert b != 0, "Cannot divide by zero"

return a / b

User-Defined Exceptions:
- You can define custom exceptions by creating a new class.

- Example:

class MyError(Exception):

def __init__(self, message):

self.message = message

Exception Logging:
- Use the `logging` module to log exception details.

- Example:

import logging

try:

result = 1 / 0

except ZeroDivisionError as e:

logging.exception("An error occurred")KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
22

GUI Programming with Tkinter

Creating User Interface:
- Tkinter is a standard GUI library for Python. To create a GUI, you first need to create a
main application window.

- Example of creating a basic window:

import tkinter as tk

window = tk.Tk()

window.title("My GUI")

window.geometry("400x300")

window.mainloop()

GUI Widgets:
- Widgets are the building blocks of a GUI. Common widgets include buttons, labels, entry
fields, etc.

- Example of creating a button:

button = tk.Button(window, text="Click Me")

button.pack()

Creating Layouts:
- You can use geometry managers like `pack`, `grid`, and `place` to arrange widgets in the
window.

- Example using `pack`:

button1 = tk.Button(window, text="Button 1")

button2 = tk.Button(window, text="Button 2")

button1.pack(side="left")

button2.pack(side="left")

Check Box:
- A checkbox is a widget that allows the user to select options.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
23

- Example of creating a checkbox:

checkbox = tk.Checkbutton(window, text="Check Me")

checkbox.pack()

Radio Buttons:
- Radio buttons allow the user to select a single option from a group.

- Example of creating radio buttons:

radio_var = tk.IntVar()

radio1 = tk.Radiobutton(window, text="Option 1", variable=radio_var, value=1)

radio2 = tk.Radiobutton(window, text="Option 2", variable=radio_var, value=2)

radio1.pack()

radio2.pack()

List Box:
- A list box is a widget for displaying a list of items from which the user can select one or
more.

- Example of creating a list box:

listbox = tk.Listbox(window)

listbox.insert(1, "Item 1")

listbox.insert(2, "Item 2")

listbox.pack()

Menus:
- Menus provide a way to create dropdown menus in your application.

- Example of creating a menu bar:

menu_bar = tk.Menu(window)

file_menu = tk.Menu(menu_bar, tearoff=0)

file_menu.add_command(label="New")

file_menu.add_command(label="Open")

file_menu.add_separator()

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
24

file_menu.add_command(label="Exit", command=window.quit)

menu_bar.add_cascade(label="File", menu=file_menu)

window.config(menu=menu_bar)

Dialog Boxes:
- Dialog boxes are used for user interactions like file open or save dialogs.

- Example of a file dialog:

from tkinter import filedialog

file_path = filedialog.askopenfilename()

Tables:
- Tkinter itself does not provide table widgets. You can create tables using frames and
labels or consider using external libraries like `tkintertable`.

Network Programming

Basics of Sockets:
- Sockets are endpoints for sending or receiving data across a computer network.

- Python provides the `socket` library for socket programming.

Socket Methods:
- Common socket methods include `socket()`, `bind()`, `listen()`, `accept()`, `connect()`,
`send()`, and `recv()`.

TCP and UDP Sockets:

- TCP (Transmission Control Protocol) provides reliable, connection-oriented
communication.

- UDP (User Datagram Protocol) offers connectionless, low-latency communication.

KW
IK
NO
TE
S

http://www.kwiknotes.in

Visit http://www.kwiknotes.in for best study material
25

Two-Way Client-Server Communication:
- You can create client-server applications where the server listens for connections and the
client connects to the server.

Sending Email:

- Python's `smtplib` library is used for sending emails through SMTP (Simple Mail Transfer
Protocol).

Database Access
Advantages of a DBMS over Files:

- Database Management Systems (DBMS) offer data integrity, security, and efficient data
retrieval compared to flat files.

Database Connectivity Operations:
- Operations include creating, inserting, selecting, deleting, dropping, updating, and
performing joins in a database.

- Example using SQLite for database operations:

import sqlite3

connection = sqlite3.connect("mydb.db")

cursor = connection.cursor()

cursor.execute("CREATE TABLE IF NOT EXISTS students (id INTEGER PRIMARY

KEY, name TEXT, age INTEGER)")

cursor.execute("INSERT INTO students (name, age) VALUES (?, ?)",

("Alice", 25))

cursor.execute("SELECT * FROM students WHERE age > 20")

results = cursor.fetchall()

connection.commit()

connection.close()

KW
IK
NO
TE
S

http://www.kwiknotes.in

